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1 INTRODUCTION

In the realm of digital technology, motion recognition and predic-
tion are paramount, with wide-ranging applications in video surveil-
lance [1], human-computer interaction [2], sports analysis [3], and
pedestrian tracking [4]. The employment of 3D skeleton data se-
quences presents a sophisticated alternative to traditional video
processing, effectively mitigating issues arising from background
interference, lighting conditions, and camera angle variations.

Central to this research is the dual objective of enhancing action
recognition and pioneering long-term motion prediction. Though
existing deep neural network (DNN) structures like 3D Convolu-
tional Neural Networks (3D-CNN), Graph Convolutional Networks
(GCN), and transformer-based architectures have significantly ad-
vanced motion recognition, they encounter limitations in terms of
computational efficiency, accuracy, and generalizability, particu-
larly in predicting future actions from current motion data. This
challenge is particularly pertinent in applications demanding rapid
and accurate predictions, such as in remote-controlled robotics or
dynamic interactive systems. Additionally, while many existing
works utilize traditional statistical methods or DNN structures for
predicting human motion [5], the focus has primarily been on short-
term predictions. There is a significant gap in long-term forecasting
capabilities, which is essential for applications extending beyond
immediate future predictions.

This research proposes to bridge this gap by developing an in-
tegrated framework that enhances action recognition through ad-
vanced graph-based models and neural networks, and pioneers
long-term motion prediction. Leveraging the latest Al advance-
ments, this framework aims to intuitively understand and predict
movements. The goal is to create a system that excels in both ac-
curate recognition and future action forecasting, paving the way
for breakthroughs in remote robotic surgery, autonomous vehicles,
and interactive Al systems.

2 PROBLEM STATEMENT

Motivation:

1. Despite significant advancements in action recognition, the
integration of this technology with motion generation in a
unified system remains underexplored. Such an integrated
approach could revolutionize medical and surgical robotics,
leading to the development of sophisticated medical surgery
assistants and versatile everyday robotic aides. This research
aims to explore and capitalize on this potential, addressing a
critical gap in the field.

2. Current research in action recognition predominantly fo-
cuses on single-modal inputs. However, the success of large
language models like ChatGPT and Google Gemini in han-
dling multimodal inputs suggests a promising direction for

robotic systems. This project proposes the development of
a system that leverages multimodal inputs (voice, ambient
sounds, video, etc.) to enhance the effectiveness of robotic
assistants in diverse environments.

Research Questions:

1. How can a multitasking framework be designed to effectively
utilize multimodal inputs for simultaneous motion prediction
and action recognition, particularly in robotic applications?

2. What are the key factors in building a robust and compu-
tationally efficient framework for action recognition and
prediction, and how can these be implemented in practice?

3 LITERATURE REVIEW

3.1 Motion Recognition

CNN and RNN based action recognition models. Traditional
algorithms in skeleton-based action recognition have primarily
utilized hand-crafted feature-based methods. Notable examples in-
clude [6], which employed covariance matrices of joint trajectories,
and [7], focusing on the dynamics of joints’ relative positions. Re-
cent advances mostly utilize deep learning frameworks,particularly
Recurrent Neural Networks (RNNs) and Convolutional Neural Net-
works (CNNs), due to their effectiveness in handling complex data
structures. For instance, [8, 9] demonstrated the conversion of skele-
ton sequence coordinates into pseudo-images for CNN processing.
Other noteworthy developments include the use of 3D-CNNs, as
evidenced by the stacking of pseudo-images of distance matrices
[10, 11] and the integration of 3D skeletons into cuboids [12]. Ad-
ditionally, [13] proposed an innovative two-stream 3D CNN frame-
work using 3D heatmap volumes to represent skeleton data. RNN-
based models have also been prominent, with [14, 15] effectively
capturing temporal dependencies between consecutive frames.
Graph-based models. The optimization of graph construction
strategies for extracting spatial and temporal information has been
a significant focus in recent research, exemplified by [16]’s use of
Graph Convolutional Networks (GCNs). Subsequent studies have
enhanced GCNs through methods like adjacency powering for
multi-scale modeling [17, 18] and integrating self-attention mecha-
nisms [19, 20]. A novel approach was introduced by [21], represent-
ing the human body as a hypergraph in a semi-dynamic hypergraph
neural network, offering richer information capture compared to
traditional GCNs. This concept was further expanded by [22], which
captured both spatio-temporal information and higher-order de-
pendencies, thus advancing skeleton-based action recognition.
Transformer-based models. The introduction of transformer-
based models in action recognition has marked a significant ad-
vancement in the field. These models, such as the self-supervised
video transformer by [23], utilize self-attention mechanisms to



align features from different views. [24] also employed transformer
self-attention mechanisms, processing both spatial and temporal
dimensions. Predominantly, these transformer-based methods have
been applied to video frames as input tokens [25, 26], demonstrating
their adaptability in processing complex data structures.

3.2 Motion Prediction

The domain of motion prediction has seen a predominance of Deep
Neural Network (DNN) based frameworks. Pioneering work by
[27] introduced two frameworks: the Encoder-Recurrent-Decoder
(ERD) and a LSTM-based recurrent neural network (LSTM-3LR).
[28] developed a scalable, jointly trainable stacked RNN based on
LSTMs (SRNN), which marked a significant advancement in the
field. Further, [29] adopted a convolutional sequence-to-sequence
network for long-term motion prediction. [30]’s Skeleton Tempo-
ral Network (Skel-TNet) focused on learning spatial and temporal
dependencies for human motion prediction. Notably, [31] explored
the use of Generative Adversarial Networks (GANs) to learn the
joint distribution of body poses and global motion, demonstrating
the capability to hypothesize large sections of the input 3D tensor
with missing data.

4 METHODOLOGY
4.1 Dataset

The experiments will be conducted using established datasets, out-
lined as follows:

1. NTU-RGB+D [32]: This comprehensive dataset includes
56,880 video sequences, featuring up to two subjects per
sequence and capturing 25 joint skeletons. Evaluation pro-
tocols are (i) Cross-Subject (X-Sub) and (ii) Cross-View (X-
View), providing diverse and challenging testing conditions.

2. NTU RGB+D 120 (NTU-120) [33]: An extension of NTU-
RGB+D, NTU-120 encompasses 120 action classes across
114,480 RGB+D video samples. This dataset is characterized
by its large-scale subject variety and multiple camera view-
points, following two evaluation protocols: (i) Cross-Subject
(X-Sub) and (ii) Cross-Setup (X-Set).

3. Human 3.6M (H3.6M) [34]: A significant motion capture
dataset, H3.6M features seven subjects performing 15 action
classes, represented through 32 joints. For our analysis, we
downsample sequences by half and focus on training with
six subjects, using specific clips of the 5th subject for testing.
Joint locations are converted from angle space to exponential
maps, emphasizing the 21 joints with substantial data.

4. Northwestern-UCLA [35]: This dataset, comprising 1,494
video clips from three Kinect cameras, offers multiple view-
points for each of the 10 actions performed by 10 subjects.
We adhere to the original evaluation protocol as mentioned
in [35], training on footage from the first two cameras and
testing on clips from the third.

4.2 Research Route

1. Development of a Basic Motion Recognition-Prediction
Framework: This framework consists of two primary mod-
ules:

— Recognition Module: Designed for motion class prediction,
utilizing advanced algorithms to accurately classify move-
ments.

— Prediction Module: Focused on forecasting the movement
trajectory of a virtual robotic arm. This module incorpo-
rates environmental constraints like table boundaries and
surface avoidance to ensure operational feasibility and
safety.

I have initially trained a toy model using self-recorded videos

through an LSTM network. The preliminary outcomes of

this training can be viewed at [here].

2. Comprehensive Literature Review: Our review will cover:
— The application of 3D-CNN, GCN, and transformers in

action recognition using skeleton data.

— A detailed analysis of both short-term and long-term mo-
tion prediction algorithms for skeleton sequences, such as
RNN, diffusion models, and transformers.

— Examination of transformer models proficient in process-
ing multimodal inputs.

3. Designing an Advanced Engineering Framework for
Multimodal input: This system will enable a robotic arm
to plan trajectories based on multimodal input, such as envi-
ronmental cues and verbal commands.

This approach aims to integrate and advance the fields of ro-
botics and artificial intelligence, creating a robust framework for
innovative human-machine interactions.

5 SIGNIFICANCE

Advancing Human-Machine Interaction and Robotic Assis-
tance: This research marks a pivotal advancement in human-machine
interaction, particularly in medical and surgical robotics. By inte-
grating motion recognition and prediction with multimodal input,
it sets a new paradigm in robotic assistance, offering significant
benefits in healthcare and daily living.

Setting New Benchmarks in AI and Predictive Modeling;:
The project aims to overcome current computational efficiency and
accuracy limitations in Al and predictive modeling. By applying
neural network architectures inspired by large language models,
it seeks to enhance the anticipation and understanding of human
behavior. The implications extend beyond medical robotics to ar-
eas such as autonomous vehicles, sports analytics, and interactive
entertainment, heralding a new era of technologically advanced,
safe, and efficient environments.

6 FUTURE WORK

In the next phase of this research, I aim to integrate and lever-
age the capabilities of fine-tuned Large Language Model (LLM)
platforms to enhance our motion recognition and prediction frame-
work.This future work will build upon our existing research in
motion recognition, utilizing the strengths of LLMs in understand-
ing and generating human-like responses to enhance the interaction
between robotic systems and their human counterparts. The ex-
pected outcome is a more intuitive and responsive system, capable
of understanding complex commands and executing tasks with
greater autonomy.


https://randulfzhao.github.io/files/Prediction_and_Movement.mp4
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