
Sample and Computationally Efficient Continuous-Time
Reinforcement Learning with General Function

Approximation

Runze Zhao∗1, Yue Yu∗1, Adams Yiyue Zhu2, Chen Yang1, Dongruo Zhou1

1Indiana University, 2University of Maryland, College Park

Motivation

Continuous-Time Reinforcement Learning (CTRL)
is powerful for real-world problems like robotics
and finance. While empirical methods using
complex models like neural networks are
successful, their theoretical understanding is
limited, often confined to simpler models like
Linear Quadratic Regulators. This creates a gap
between what works in practice and what we can
formally guarantee.
We address two fundamental questions:

▶ Sample Complexity: How many
measurements are needed to learn a
near-optimal policy in CTRL with general
function approximation?

▶ Computational Efficiency: Can we design
new measurement strategies to reduce the
number of expensive policy updates and rollouts
without sacrificing performance?

Our contributions

▶ We provide the first sample complexity for CTRL
with general function approximation, using the
Eluder dimension.

▶ We propose two variants of our base algorithm,
PURE, that provably reduce the number of
policy updates and rollouts.

▶ Our methods match baseline performance on
control tasks and diffusion model fine-tuning,
but with significantly lower computational cost.

Problem setup

We model the environment using a
continuous-time stochastic differential equation
(SDE):

dx(t) = f ∗(x(t), u(t))dt + g∗(x(t), u(t))dw(t)

▶ x(t): State at time t
▶ u(t) = π(x(t)): Control from policy π
▶ f ∗: Unknown system dynamics (drift)
▶ g∗: Known system dynamics (diffusion)
▶ w(t): Standard Wiener process

Objective: Find a policy π ∈ Π that maximizes
the total expected reward:

max
π∈Π

R(π) := E

[∫ T

0

b∗(x(t), π(x(t)))dt

]
where b∗ is the unknown reward function.
Measurement Model: In practice, we can’t
observe the instantaneous drift f ∗ directly. We
approximate it by observing the state at two close
points jointly in time, x(t) and x(t +∆), and
calculating apply the Euler – Maruyama method
[Platen and Bruti-Liberati, 2010] to approximate

y(t) ≈ x(t+∆)−x(t)
∆ .

Complexity Measure: We characterize the
complexity of the function classes for the
dynamics (F) and reward (R) using the
Distributional Eluder Dimension (dF , dR).

Algorithm Overview

PURE (Policy Update and Rolling-out Efficient
CTRL) is a model-based algorithm that learns
optimistic estimates of the dynamics (f) and
reward (b) within confidence sets and plans
accordingly. We propose three variants:

▶ PUREbase: The foundational algorithm. It
establishes sample efficiency by updating the
policy at every step, providing a strong
theoretical baseline.

▶ PURELowSwitch: Reduces computational cost by
updating the policy only when the current
model no longer fits the data well. This
avoids unnecessary, expensive updates.

▶ PURELowRollout: Reduces the number of
environment rollouts by taking multiple
measurements within a single trajectory,
balancing data efficiency with the cost of
starting a new rollout.

Algorithm PUREbase

1: Initialize: Confidence sets for system dynamics (F1) and
reward (R1).

2: for each episode n = 1, . . . , N do
3: 1. Plan with Optimism: Find the best policy (πn) and

models (fn, bn) by maximizing the reward within the current
confidence sets.

(πn, qn, fn, bn)← argmax
π∈Π,q∈Q,f∈Fn,b∈Rn

R(π, q, f, b)

4: 2. Data Collection: Execute the policy πn to collect a
new data point.

5: 3. Update Confidence Sets: Use the new data to refine
the confidence sets Fn+1 and Rn+1.

6: Output: Policy (π̂, q̂) from one of the episodes.

Key assumptions

Our theoretical results rely on standard
assumptions in the field. Primarily, we assume the
dynamics (f ∗), reward (b∗), and policy (π)
functions are Lipschitz continuous. This
means that small changes in the state or control
input lead to small changes in the system’s
evolution and reward, which is a common
assumption for ensuring well-behaved systems.

Theoretical guarantee

Our algorithms are backed by rigorous guarantees
on performance and efficiency. The following
table contrasts their suboptimality gaps with their
computational costs (number of updates and
rollouts).

Algorithm Gap #Update / Rollout

PUREbase Õ

(√
dR+dF
N

)
N , N

PURELowSwitch Õ

(√
dR+dF
N

)
O(logN), N

PURELowRollout Õ

(√
CT,m

N + m
N

)
N/m, N/m

▶ N : Total number of measurements.
▶ m: Number of measurements per rollout.
▶ CT ,m: A term related to the measurement

strategy within a rollout, appearing in the
suboptimality gap for PURELowRollout.

Exp 1: Fine-Tuning Diffusion Models

▶ We apply our rollout-efficient strategy,
PURESEIKO, to fine-tune a Stable Diffusion
model on the SEIKO framework [Uehara et al.,
2024], aiming to enhance image aesthetic scores.

▶ Result: PURESEIKO achieves aesthetic scores
comparable to the baseline while reducing total
training time by ≈50%, validating the efficiency
of performing multiple measurements per rollout.

PURESEIKO SEIKO0.0

2.5

5.0

7.5

Re
wa

rd
s

0

10

20

30

Ru
n 

Ti
m

e 
(H

ou
rs

)

Figure: Summary of the experiment for fine-tuning Diffusion
Models.

Exp 2: Continuous-Time Control

▶ Our low-switching strategy, PUREENODE, is
integrated into the ENODE baseline [Yildiz
et al., 2021] to reduce policy update frequency in
Acrobot, Pendulum, and CartPole environments.

▶ Result: PUREENODE matches the baseline’s
performance with only 25% to 50% of the policy
updates, cutting training time by nearly 50% and
showcasing the efficacy of our update strategy.

PUREENODE ENODE0.00

0.25

0.50

0.75

1.00

Re
wa

rd
s

0

2

4

6

Ru
n 

Ti
m

e 
(H

ou
rs

)

Figure: Comparison on Acrobot

PUREENODE ENODE0.00

0.25

0.50

0.75

1.00

Re
wa

rd
s

0.0

0.2

0.4

0.6

0.8

Ru
n 

Ti
m

e 
(H

ou
rs

)
Figure: Comparison on Pendulum

PUREENODE ENODE0.0

0.2

0.4

0.6

0.8

1.0

Re
wa

rd
s

0.0

2.5

5.0

7.5
Ru

n 
Ti

m
e 

(H
ou

rs
)

Figure: Comparison on Cart Pole

Conclusion

▶ We propose PURE, a provably sample and
computationally efficient algorithm for
continuous-time reinforcement learning (CTRL).

▶ Empirical results confirm our method achieves
comparable performance with significantly fewer
policy updates and rollouts across all tested
tasks.

Sample and Computationally Efficient Continuous-Time Reinforcement Learning with General Function Approximation


