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Algorithm Overview Exp 1: Fine-Tuning Diffusion Models

Continuous-Time Reinforcement Learning (CTRL) PURE (Policy Update and Rolling-out Efficient » We apply our rollout-efficient strategy,

is powerful for real-world problems like robotics CTRL) is a model-based algorithm that learns PUREsgiko, to fine-tune a Stable Diffusion

and finance. While empirical methods using optimistic estimates of the dynamics (f) and model on the SEIKO framework [Uehara et al.,
complex models like neural networks are reward (b) within confidence sets and plans 2024], aiming to enhance image aesthetic scores.
successful, their theoretical understanding is accordingly. We propose three variants: » Result: PUREsg ko achieves aesthetic scores
imited, often confined to simpler models like » PUREy..: The foundational algorithm. It comparable to the baseline while reducing total
_inear Quadratic Regulators. This creates a gap establishes sample efficiency by updating the training time by ~50%, validating the efficiency
netween what works in practice and what we can policy at every step, providing a strong of performing multiple measurements per rollout.
formally guarantee. theoretical baseline. =

We address two fundamental questions: » PURE| ouwswitch: Reduces computational cost by 7.5 -30%

» Sample Complexity: How many updating the policy only when the current §5_0_ 20%
measurements are needed to learn a model no longer fits the data well. This 5 £
near-optimal policy in CTRL with general avoids unnecessary, expensive updates. T2 10%
function approximation? » PURE| . roilout: Reduces the number of %0 PURE<eo SElko ° °

» Computational Efficiency: Can we design environment rollouts by taking multiple Figure: Summary of the experiment for fine-tuning Diffusion
new measurement strategies to reduce the measurements within a single trajectory, Models.
number of expensive policy updates and rollouts balancing data efficiency with the cost of
without sacrificing performance? starting a new rollout. Exp 2: Continuous-Time Control

Algorithm PURE, .

Our contributions Our low-switching strategy, PURE s
_ 1: Initialize: Confidence sets for system dynamics (F;) and 5 5Y ENODE

reward (R)). integrated into the ENODE baseline [Yildiz

> We provide the f|r§t sample c.ompl_eX|ty fc?r CTRL 2. for each episode n = 1,..., N do et al., 2021] to reduce policy update frequency in
with general function approximation, using the 3: 1. Plan with Optimism: Find the best policy (7,) and Acrobot, Pendulum, and CartPole environments.
Eluder dimension. models (f,,, b,) by maximizing the reward within the current » Result: PUREgyopE matches the baseline's

» We propose two variants of our base algorithm, confidence sets. serformance with only 25% to 50% of the policy

PURE, that provably reduce the number of (T Gy [, ) < argmax  R(m,q, f,b)

I dat d rollout el fe F. beR updates, cutting training time by nearly 50% and
policy updates and rollouts. GEQ fEFLER,,

4: 2. Data Collection: Execute the policy 7, to collect a showcasing the efficacy of our update strategy.

» Our methods match baseline performance on .
new data point.

control tasks and diffusion model fine-tuning, 5. 3. Update Confidence Sets: Use the new data to refine 1001 6%
but with significantly lower computational cost. the confidence sets F,,.; and R, ;. B 0.75 4T
6: Output: Policy (7, ) from one of the episodes. 2 0.50 2
Q =
Problem setup £ e 21
Key assumptions z
We model the environment using 3 ool DA [S— >
continuous-time stochastic differential equation Our theoretical results rely on standard Figure: Comparison on Acrobot
(SDE): assumptions in the field. Primarily, we assume the
_ g . dynamics (f*), reward (b*), and policy ()
dx(t) = [ (x(t), u(t))dt + g™ (x(t), u(t))dw(t) ' '

functions are Lipschitz continuous. This
means that small changes in the state or control

Rewards

> (1) State at time { input lead to small changes in the system's 2!
> u(t) = 7(x(t)): Control from policy 7 evolution and reward, which is a common - 0.0%
> /7 Unknown system dynamics (drift) assumption for ensuring well-behaved systems. IID:l.JRE_E'\(':ODE . E)NCleE
» g% Known system dynamics (diffusion) SHTE: -Omparisbn on TERTHEm
» w(t): Standard Wiener process Theoretical guarantee 758
Objective: Find a policy 7 € IT that maximizes Our algorithms are backed by rigorous guarantees : OfIi
the total expected reward: on performance and efficiency. The following :
] T . ) table contrasts their suboptimality gaps with their 2 221
thas R(m) =K /0 b™(2(t), m(x(t)))dt colrlnp:t)ational costs (number of updates and " BURE enone ENODE 0.02
- - rollouts).

where b* is the unknown reward function. Figure: Comparison on Cart Pole

Measurement Model: |n practice, we can't Algorithm Gap #Update / Rollout

approximate it by observing the state at two close B
points jointly in time, z(¢) and x(t + A), and PURE owswiteh O (\/%) O(log N), N

» We propose PURE, a provably sample and
computationally efficient algorithm for

cloing sy e EerMoroma ol e (45 8) v ot foremen i (CTRL)
y(t) ~ r(t+A)—w(t) i P —— » Empirical results confirm our m.eth.o.d achieves
ComplexityAMeasure: We characterive the - U U - comparable performance with significantly fewer

. . » m: Number of measurements per rollout. policy updates and rollouts across all tested
complexity of the function classes for the > C7,.: A term related to the measurement facke.

dynamics (F) and reward (R) using the

strategy within a rollout, appearing in the
Distributional Eluder Dimension (dr, dr). o) PPEariie

suboptimality gap for PURE| owRollout-
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