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1 Introduction

1.1 Introduction to spectral clustering

Spectral clustering[7][11] is a prominent technique in the field of machine learning, particularly for

unsupervised learning tasks, such as data clustering and image segmentation. The primary objective

of this method is to partition data points into distinct groups or clusters to optimize intra-cluster

similarity and inter-cluster dissimilarity[10]. Spectral clustering is a graph-based approach that utilizes

eigenvectors of the similarity matrix to project data points into a lower-dimensional space, allowing

for more effective separation of complex data structures and non-convex clusters.

Unlike centroid-based methods such as k-means clustering, which make assumptions about cluster

shapes and sizes, spectral clustering can handle a variety of cluster shapes and structures. Therefore, it

is considered a more versatile and robust solution to data clustering and image segmentation problems,

especially when dealing with complex and non-convex datasets.

1.2 Paradigm to deal with spectral clustering

Briefly speaking, what spectral clustering do is to learn the label matrix Y from dataset X, with the

key ’by-products’ shown as follows:

X → ϕ(X)→ A→ L→ Y

where ϕ(X) is the data matrix after kernel transformation, A is the affinity matrix, L is the Laplacian

matrix. We have summarized the symbols and formula in the appendix A.1 and A.2 respectively. The

real process of spectral clustering can be roughly divided into two steps[2]:

i. Construct an affinity matrix A: Each element of the matrix A represents the similarity between

two data points. Two predominant approaches are used to accomplish this idea.

a. The first approach entails constructing the similarity matrix from the data matrix X us-

ing conventional transformations, such as the k-nearest neighbors (KNN) method and the

Gaussian kernel method (k(x, y) = exp(−||x− y||2/2σ2)). Here k, σ is hyper-parameter.

b. The second approach involves adopting a self-expressive model [1] that learns the affinity

matrix by utilizing an optimization function. Some of the previous researchers adopted

Low-Rank Representation (LRR)[4] to deal with the task, and some used the least-square

representation model (LSR) [5] to deal with the problem.

ii. Find the optimal cluster results Y based on A: Former researchers usually

a. perform Eigenvalue Decomposition (EVD) on affinity matrix A and get the first c eigenvec-

tors;

b. apply k-means clustering on the first c eigenvectors. Here c refers to the number of clusters.

Generally, the ”optimality” of such divisions is evaluated using the normalized cut (NCuts)[10]

and its variants. For example, some researchers deal with relative eigen-gap to improve the

performance[2]. Additionally, some researchers[8] have summarized the process into two stages:

a. Solve the optimization function min
FTF=I,W,b

tr(FT L̃F ) to learn a relaxed cluster assignment

F . Here L̃ represents the normalized Laplacian matrix.

b. Use k-means clustering or spectral rotation on F to determine the cluster assignment.

2 Relation between our works and others’

We followed the main idea of conventional LSR Spectral Clustering, but replace the the regularization

term with p-norm in constructing affinity matrix A.
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2.1 Least Square Representation model (LSR)

The Least Square Representation model (LSR)[5] technique employs the method of least squares to

build a model using the self-expressive process described by the equation

min
C
||X −XC||2F + λR(C)

where λ is hyper-parameter and R(C) denotes the regularization term. However, in the case of data

exhibiting a non-linear relationship, linear regression cannot accurately capture the similarity between

the pairwise columns of X. To address this, we can modify the equation by incorporating a kernel

function ϕ(.), such that it becomes

min
C
||ϕ(X)− ϕ(X)C||2F + λR(C)[2]

The kernel functions ϕ(.) is used in preprocessing to transform the data.

Our research differ from the original work by applying the Schatten p-norm (0 < p < 1) as a

regularization term: λ||C||pp. By experimental results, this approach is suitable for capturing the

non-linear relationship inherent in the data with the use of a kernel function.

2.2 p-norm

There are limited references available on matrix p-norm that can be utilized as a foundation for our

study. Some existing literature has used the p-norm in step 2 of 1.2 within the framework of Low-Rank

Representation (LRR) [3], but p-norm are not applied to the affinity learning.

As commonly acknowledged, the computation of the p-norm is challenging due to its non-convexity

(for 0 < p < 1), which may lead to sub-optimal solutions if the optimization algorithm becomes trapped

in a local minimum rather than discovering the global minimum. In this paper, however, we employ

two variants of the p-norm: the proximal p-norm and the Schatten p-norm. Doing so establishes a

p-norm-constrained self-expressive approach as a theoretical framework for future research endeavors.

2.3 Summary our main contribution

This report presents a concise analysis of two methodologies that incorporate the p-norm as a regu-

larization term during the data preprocessing phase of spectral clustering. The derivation processes

for employing the proximal p-norm and Schatten p-norm within the affinity learning stage of spectral

clustering are elucidated. Owing to computational constraints, only the performance of the Schatten

p-norm can be assessed. Nonetheless, a functional spectral clustering framework is provided for future

researchers, which displays encouraging outcomes. Acknowledging that this research domain has yet

to be thoroughly investigated within the context of spectral clustering is crucial.

3 approach using proximal p-norm

The problem can be formulated as follows:

min
c
||ϕ(X)− ϕ(X)C||2F + λ||C||pp

s.t. 0 ≤ C ≤ 1

where the proximal p-norm is expressed as ||C||pp =
∑n

i=1

∑n
j=1 |Cij |p. The data matrix X ∈ Rm×n

represents the dataset, with m denoting the dimension of features, n signifying the number of observa-

tions, and p indicating the power of the norm (with 0 < p < 1). The kernel function, ϕ(.), is represented

by the Gaussian kernel, such that ϕ(X)ij = exp(−||Xi −Xj ||2/2σ2), where σ is a hyperparameter.
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Following the framework of Least Square Representation (LSR), the output is C∗ ∈ Rn×n. Subse-

quently, the affinity matrix A is constructed as A = (C + CT )/2 ∈ Rn×n. The Laplacian matrix L̃ is

formulated as L = I − D−1/2AD−1/2, where D refers to the degree matrix derived from the affinity

matrix using D = diag(A · e), and e = [1; 1; . . . ; 1].

To generate the algorithm, we employ the concept of the Alternating Direction Method of Multi-

pliers (ADMM) to iteratively obtain the optimized result as follows (for a detailed explanation, please

refer to the content in appendixB.1):

Algorithm 1 Updating proximal p-norm using ADMM

Input: X,λ, p, ρ, γ, α, tolerance Initialize C(0), Z(0), U (0) while not converged do

C-update: C(k+1) ← (2XTX + 1
ρIn)

−1(2XTX + Uk + 1
ρZ

k)

Z-update: Use a solver to compute Z: ∂L
∂zij

= λpzijp−1 + γI(zij − 1) + 1
ρ (zij − cij) + uij = 0

U-update: Uk+1 = Uk + ρ(Zk+1 − Ck+1)

Convergence: if (primal) Ct+1 − Zt+1 ≤ tol and (dual) ρ(Zt+1 − Zt) ≤ tol: break

end

Nonetheless, the computation proves to be too slow due to the following aspects:

• Matrix inversion: Inverting (2XTX + 1
ρIn)

−1 has a computational complexity of O(n3).

• Solver for Z-update: The golden-section solver is chosen to update Zij , resulting in an approxi-

mate computational complexity of log( 1ϵ ) for each entry [6], which is quite high.

• Potential complex solutions may arise when performing the element-wise update.

4 approach using Schatten p-norm

The Schatten p-norm is defined as ||X||Sp
= (

∑n
i=1 σ

p
i (X))1/p, where σi(X) represents the ith singular

value of X (obtained through singular value decomposition).

Drawing from prior research[9], for 1
2 < p < 1 and d ≥ rank(C), the following holds true:

||C||p = min
U∈Rn×d,V ∈Rn×d,C=UV T

||U ||2F + ||V ||2F
2

Thus, for 1
2 < p < 1, we define L = ||ϕ(X)− ϕ(X)UV T ||2F + λ

2 ||U ||
2
F + λ

2 ||V ||
2
F as a relaxation of the

previous optimization problem without loss of generality. Employing gradient descent, we design the

algorithm as follows (for more details, please refer to the content in appendixB.2):

Algorithm 2 Update Schatten p-norm using decomposition

repeat
Update U using the grdient descent:

∇UL = 2ϕ(X)Tϕ(X)(UV T − I)V + λU

Update V using the closed-form solution for V:

V = 2ϕ(X)Tϕ(X)U(2UTϕ(X)Tϕ(X)U + λI)−1

until until convergence: ||U − Uold||2F < tol;

return Affinity matrix: A = (C + CT )/2
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5 Performance

We perform a comparison between various p-norm spectral clustering algorithms, conventional spectral

clustering algorithms, and similar algorithms using generated data:

Figure 1: Comparison for large-scale data

Our findings indicate that our algorithm performs effectively on a sample size of 500. Moreover,

when applied to small-scale data (with a sample size of 100), our algorithm demonstrates superior

performance compared to conventional spectral clustering:

Figure 2: Comparison for small-scale data

6 Conclusion

In summary, we have proposed a p-norm spectral clustering algorithm. Our experiments demonstrate

that this algorithm performs effectively on datasets of average size and yields superior results when

applied to small-scale data, making it suitable for providing a robust cold start for spectral clustering

models. Also, it is essential to note that our work is limited to the Least Squares Representation

(LSR) form of spectral clustering, as there are various alternative approaches to spectral clustering yet

considered in this study.
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A Summary of symbols and formula

A.1 Symbol used for this algorithm

• X: data matrix, X ∈ Rn×m, where n refers to the number of observations, m refers to the

number of features of samples.

• C: similarity matrix learned using the self-expressive algorithm. C ∈ Rn×n

• A: affinity matrix, which performs spectral clustering. A = (C + CT )/2 ∈ Rn×n

• D: Degree matrix, constructed from the affinity matrix by D = diag(A · e)

• L: Laplacian matrix, L ∈ Rn×n

• F : Continuous indication matrix. F ∈ Rn×c

A.2 Formula used for this algorithm

• ||.||2F refers to the Frobenius norm, where ||X||2F =
∑n

i=1

∑m
j=1 X

2
ij for matrix X ∈ Rn×m

• Proximal p-norm: ||X||pp =
∑n

i=1

∑m
j=1 |Xij |p for matrix X ∈ Rn×m

• Schatten-p quasi-norm: ||X||Sp
= (

∑n
i=1 σ

p
i (X))1/p, where σi(X) denotes the ith singular value

of X (approached by singular value decomposition)

• ϕ(.) is a kernel function, here we adopt Gaussian kernel, where ϕ(X)ij = exp(−||Xi−Xj ||2/2σ2),

σ being hyper-parameter. ϕ(.) : Rn×m 7→ Rn×n
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B Detailed Derivations

B.1 Derivation for proximal p-norm

• Augmented Lagrangian is proposed as:

Lρ(C,Z,U) = ||ϕ(X)− ϕ(X)C||2F + λ||Z||pp + γ
∑
i,j

max(zij − 1, 0)2 + Tr(UT (Z − C)) +
1

2ρ
||Z − C||2F

Here, U is the dual variable, denoted as the Lagrange multiplier and ρ > 0 is a penalty parameter.

• We then propose the ADMM process as follows:

* C-update: Update the variable C by minimizing the augmented Lagrangian with respect

to C:

Ck+1 = argmin
C

L(C,Zk, UK)

= (2ϕ(X)Tϕ(X) +
1

ρ
In)

−1(2ϕ(X)Tϕ(X) + Uk +
1

ρ
Zk)

* Z-update: Unfortunately, finding a closed-form solution for Z-update is not straightforward

due to the non-convex nature of the ||Z||pp term and the penalty term. Thanks to the format

of our chosen objective function, we can relax the matrix optimization to an element-wise

optimization without loss of generality. Below, we show our deriving process.

L2 = λ||Z||pp + γ
∑
i,j

max(zij − 1, 0) + Tr(UT (Z − C)) +
1

2ρ
||Z − C||2F

= λ
∑
i,j

(zij)
p + γ

∑
i,j

max(zij − 1, 0) +
∑
i,j

1

2ρ
(zij − cij)

2 + uij(zij − cij)

=
∑
i,j

(λzpij + γI(zij − 1) +
1

2ρ
(zij − cij)

2 + uij(zij − cij))

∂L

∂Z
= λpzp−1

ij + γI(zij − 1) +
1

ρ
(zij − cij) + uij = 0

Using solver to solve.

* U-update:

Uk+1 = Uk + ρ(Zk+1 − Ck+1)

B.2 Derivation for Schatten p-norm

We first take the derivative of L to V and U, respectively.

1. Derivative to U:
∂L

∂U
= 2ϕ(X)Tϕ(X)(UV T − I)V + λU

2. Derivative to V:
∂L

∂V
= 2V UTϕ(X)Tϕ(X)U − 2ϕ(X)Tϕ(X)U + λV

Following the first-order necessary condition, we can derive that the close form solution for V is

V = 2ϕ(X)Tϕ(X)U(2UTϕ(X)Tϕ(X)U + λI)−1
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Unfortunately, close form solution for U is hard to derive straightly. Thus, we borrow the idea of GD

and construct the following algorithm to update the value of U .
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